Calmodulin Increases the Sensitivity of Type 3 Inositol-1,4,5-trisphosphate Receptors to Ca²⁺ Inhibition in Human Bronchial Mucosal Cells

LUDWIG MISSIAEN, HUMBERT DESMEDT, GEERT BULTYNCK, SARA VANLINGEN, PATRICK DESMET, GEERT CALLEWAERT, and JAN B. PARYS

Laboratorium voor Fysiologie, K.U.Leuven Campus Gasthuisberg O/N, Leuven, Belgium

Received July 12, 1999; accepted December 10, 1999

This paper is available online at http://www.molpharm.org

ABSTRACT

Inositol-1,4,5-trisphosphate (IP₃) releases Ca^{2+} from intracellular stores by binding to its receptor (IP₃R), a multigene family of Ca^{2+} -release channels consisting of IP₃R1, IP₃R2, and IP₃R3. IP₃R1 is stimulated by low cytoplasmic Ca^{2+} concentrations and inhibited by high concentrations. Discrepant reports appeared about the effect of cytoplasmic Ca^{2+} on IP₃R3, showing either a bell-shaped dependence or only a stimulatory phase with no negative feedback by high Ca^{2+} concentrations. We investigated how calmodulin interfered with the feedback of cytosolic Ca^{2+} on the unidirectional IP₃-induced Ca^{2+} release in permeabilized 16HBE14o- bronchial mucosal cells, where

IP $_3$ R3 represents 93% of the receptors at the mRNA level and 81% at the protein level. Calmodulin inhibited the Ca $^{2+}$ release induced by 1.5 μ M IP $_3$ with an IC $_{50}$ value of 9 μ M. This inhibition was absolutely dependent on the presence of cytosolic Ca $^{2+}$. Ca $^{2+}$ inhibited the IP $_3$ R with an IC $_{50}$ value of 0.92 μ M Ca $^{2+}$ in the absence of calmodulin and with an IC $_{50}$ value of 0.15 μ M Ca $^{2+}$ in its presence. It is concluded that: 1) IP $_3$ R3 can be inhibited by calmodulin, 2) IP $_3$ R3 is inhibited by high Ca $^{2+}$ concentrations, and 3) calmodulin shifts the inhibitory part of the Ca $^{2+}$ -response curve toward lower Ca $^{2+}$ concentrations.

Many hormones, neurotransmitters, and growth factors induce the hydrolysis of phosphatidylinositol-4,5-bisphosphate and thereby produce inositol-1,4,5-trisphosphate (IP $_3$) as an intracellular messenger (Berridge, 1993). IP $_3$ releases Ca $^{2+}$ from intracellular stores by binding to the IP $_3$ receptor (IP $_3$ R), a multigene family of Ca $^{2+}$ -release channels consisting of IP $_3$ R1 (Furuichi et al., 1989), IP $_3$ R2 (Südhof et al., 1991), and IP $_3$ R3 (Blondel et al., 1993). This Ca $^{2+}$ release results in the generation of complex cytoplasmic Ca $^{2+}$ signals, including Ca $^{2+}$ oscillations and propagating Ca $^{2+}$ waves (Lechleiter et al., 1991).

Cytosolic ${\rm Ca^{2^+}}$ has a bell-shaped effect on ${\rm IP_3R1}$, with low concentrations stimulating the ${\rm Ca^{2^+}}$ release and high concentrations inhibiting it (Iino, 1990; Bezprozvanny et al., 1991; Finch et al., 1991; Parys et al., 1992). The regulation of ${\rm IP_3R2}$ and ${\rm IP_3R3}$ by ${\rm Ca^{2^+}}$ is, however, less well understood. ${\rm IP_3}$ -induced ${\rm Ca^{2^+}}$ release in permeabilized rat basophilic leukemia cells, which predominantly express ${\rm IP_3R2}$ (De Smedt et al., 1994), is not inactivated by cytosolic ${\rm Ca^{2^+}}$ (Horne and Meyer, 1995), and the partially purified cardiac ${\rm IP_3R2}$ also

lacks the inhibition at high Ca2+ concentrations in singlechannel recordings (Ramos-Franco et al., 1998). In contrast, the IP₃-induced Ca²⁺ release in permeabilized chicken B cells genetically modified to express only IP₃R2 was inhibited by 1 μ M Ca²⁺ (Miyakawa et al., 1999). The effects of high Ca²⁺ concentrations on IP₃R3 have been studied using different techniques, and the reports are so far discrepant. The IP_3Rs in RIN-m5F insulinoma cells, which are between 60%(De Smedt et al., 1994) and 96% (Wojcikiewicz, 1995) of type 3, were not inhibited by up to 100 μ M Ca²⁺ when incorporated in planar lipid bilayers (Hagar et al., 1998). In contrast, patch-clamp experiments on outer nuclear membranes of Xenopus oocytes overexpressing IP₃R3 revealed that micromolar Ca2+ did inhibit IP3-induced channel activity (Mak et al., 1998a). Reports on the effects of high Ca²⁺ on IP₃R3 in permeabilized cells are also discrepant. IP₃-induced Ca²⁺ release in permeabilized 16HBE14o- cells, which predominantly express IP_3R3 (Sienaert et al., 1998), was inhibited by micromolar Ca²⁺ (Missiaen et al., 1998; Sienaert et al., 1998). In contrast, the release in permeabilized chicken B cells expressing only IP₃R3 was not inhibited by 1 μ M Ca²⁺, but higher concentrations were not tested (Miyakawa et al., 1999). One possible explanation for these divergent results is that experimental conditions and/or regulatory mechanisms

ABBREVIATIONS: IP₃, inositol-1,4,5-trisphosphate; IP₃R, inositol-1,4,5-trisphosphate receptor; BAPTA, 1,2-bis(2-aminophenoxy)ethane-*N.N.N'.N'* -tetraacetic acid.

This work was supported by the Interuniversity Poles of Attraction Program, Belgian State, Prime Minister's Office, Federal Office for Scientific, Technical and Cultural Affairs IUAP P4/23 and by European Commission Grant BMH4-CT96-0656.

Downloaded from molpharm.aspetjournals.org by guest on December 1, 2012

can interfere with the bell-shaped Ca^{2+} dependence of the IP_3 -induced Ca^{2+} release [e.g., the effects of cytosolic Ca^{2+} on the IP_3R depend on the free Mg^{2+} concentration, pH, and the IP_3 and ATP concentrations (Tsukioka et al., 1994; Bootman et al., 1995; Mak et al., 1998b, 1999)]. In the present study, we focus on the effect of the Ca^{2+} -binding protein calmodulin.

Calmodulin binds to $\rm IP_3R1$ (Maeda et al., 1991; Yamada et al., 1995; Patel et al., 1997; Cardy and Taylor, 1998), and this interaction results in a decreased binding of $\rm IP_3$ to $\rm IP_3R1$ (Patel et al., 1997; Cardy and Taylor, 1998; Sipma et al., 1999). Exogenous calmodulin inhibits $\rm IP_3$ -induced $\rm Ca^{2+}$ release in permeabilized A7r5 cells (Missiaen et al., 1999), which express for 75% $\rm IP_3R1$ and for 25% $\rm IP_3R3$ (De Smedt et al., 1994). Calmodulin also inhibits the purified cerebellar $\rm IP_3R1$ incorporated in planar lipid bilayers (Michikawa et al., 1999).

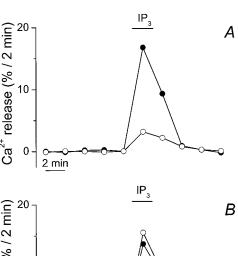
The aim of this work was to investigate the effects of calmodulin on $\rm IP_3$ -induced $\rm Ca^{2+}$ release in permeabilized 16HBE140- human bronchial mucosal cells, which express for 93% $\rm IP_3R3$, as judged from the relative levels of steady-state mRNA, and for 81% $\rm IP_3R3$ as judged from experiments using isoform-specific antibodies (Sienaert et al., 1998).

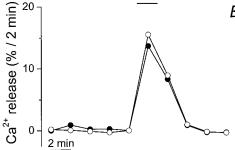
We now report that calmodulin inhibited the IP_3 -induced Ca^{2+} release if the free cytosolic Ca^{2+} concentration was 0.1 μM or higher. This inhibition occurred with an IC_{50} value of 9 μM calmodulin. Calmodulin shifted the inhibitory part of the Ca^{2+} -response curve of the IP_3 -induced Ca^{2+} release toward lower Ca^{2+} concentrations. We conclude that IP_3R3 is inhibited by calmodulin and that the Ca^{2+} concentrations needed to inactivate IP_3R3 are decreased by the presence of calmodulin.

Materials and Methods

⁴⁵Ca²⁺ fluxes were performed on saponin-permeabilized 16HBE14ocells derived from human bronchial surface epithelium (Cozens et al., 1994) at 25°C as described previously (Missiaen et al., 1998). The nonmitochondrial Ca²⁺ stores were loaded for 45 min in 120 mM KCl, 30 mM imidazole-HCl (pH 6.8), 5 mM MgCl₂, 5 mM ATP, 0.44 mM EGTA, 10 mM NaN $_3$ and 150 nM free $\tilde{\text{Ca}}^{2+}$ (23 $\mu\text{Ci/ml}$) and then washed once in 1 ml of efflux medium containing 120 mM KCl, 30 mM imidazole-HCl (pH 6.8), 1 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'tetraacetic acid (BAPTA), and 4 µM thapsigargin. Thapsigargin was added to block the endoplasmic-reticulum Ca²⁺ pumps during subsequent additions of Ca²⁺. The efflux medium was replaced every 2 min for 20 min. The additions of IP_3 , Ca^{2+} , and calmodulin are indicated in the figures. The free Ca²⁺ concentration was calculated with the CaBuf computer program using the following decimal logarithms of the association constants for ATP: H-ATP, 6.49; H-HATP, 4.11; Ca-ATP, 3.78; Ca-HATP, 1.98; Mg-ATP, 4.00; and Mg-HATP, 2.06 (Martell and Smith, 1982). The association constants for BAPTA were H-BAPTA, 6.36; H-HBAPTA, 5.47; and Ca-BAPTA, 6.97 (Tsien, 1980). At the end of the experiment, the ⁴⁵Ca²⁺ remaining in the stores was released by incubation with 1 ml of a 2% SDS solution for 30 min.

Calmodulin from bovine brain (purity >99%; Calbiochem, San Diego, CA) was made Ca²⁺-free by batch treatment with 50 mg/ml Chelex 100 (Bio-Rad Laboratories, Hercules, CA) for 1 h at 10°C. Calmodulin was dissolved as a 1 mM stock in 30 mM imidazole-HCl (pH 6.8). Control samples were treated with the same buffer.


Results

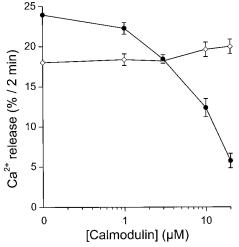

 IP_3 -Induced Ca^{2+} Release in Permeabilized 16HBE14o-Cells. The nonmitochondrial Ca^{2+} stores of permeabilized 16HBE14o- cells were first loaded to equilibrium with $^{45}Ca^{2+}$ and then incubated in efflux medium containing 1 mM BAPTA and no added Ca $^{2+}$. Thapsigargin (4 $\mu \rm M$) was added to the efflux medium to allow a unidirectional Ca $^{2+}$ efflux. Figure 1A (filled circles) illustrates that a 2-min exposure to 1.5 $\mu \rm M$ IP $_3$ and 0.3 $\mu \rm M$ free Ca $^{2+}$ accelerated the rate of Ca $^{2+}$ loss. The traces were corrected for the passive Ca $^{2+}$ efflux in an identical medium in the absence of IP $_3$. This concentration of IP $_3$ released 45 \pm 4% of the Ca $^{2+}$ released by a saturating dose of 100 $\mu \rm M$ IP $_3$ in the presence of 0.3 $\mu \rm M$ free Ca $^{2+}$ (n = 3).

Effect of Calmodulin on IP₃-Induced Ca²⁺ Release. Figure 1 also illustrates the effect of 20 μ M calmodulin (open symbols), added at the time of IP₃ addition, on the Ca²⁺ release induced by 1.5 μ M IP₃ in the presence of 0.3 μ M free Ca²⁺ (Fig. 1A) and in the absence of added Ca²⁺ (Fig. 1B). Exogenously added calmodulin inhibited the IP₃-induced Ca²⁺ release in the presence of 0.3 μ M Ca²⁺ but was unable to inhibit the release in the absence of added Ca²⁺.

The inhibition by calmodulin was not caused by contaminating Ca^{2+} in the calmodulin sample for two reasons. First, calmodulin was made Ca^{2+}-free by pretreatment with Chelex 100 (see *Materials and Methods*). Second, the inhibition still occurred when the free Ca^{2+} concentration was set at 0.3 μM using 6 mM BAPTA instead of the routinely used 1 mM BAPTA (data not shown).

Inhibition of IP₃R by Calmodulin Is Dose-Dependent. The Ca²⁺ release induced by 1.5 μ M IP₃ and a whole range of calmodulin concentrations in a medium containing 0.3 μ M free Ca²⁺ (filled symbols) and in a medium with 1 mM

Fig. 1. Effect of calmodulin on the IP_3 -induced Ca^{2^+} release in permeabilized 16HBE14o- cells. The nonmitochondrial Ca^{2^+} stores were loaded to steady state with $^{45}Ca^{2^+}$ and then incubated in efflux medium containing 1 mM BAPTA and no added Ca^{2^+} . During the time period indicated by the horizontal bar, 1.5 μM IP_3 and 0.3 μM free Ca^{2^+} (A) or 1.5 μM IP_3 alone (B) were added for 2 min in the absence (\bullet) or presence (\bigcirc) of 20 μM calmodulin. The traces were corrected for the passive Ca^{2^+} efflux in an identical efflux medium in the absence of IP_3 . Ca^{2^+} release is plotted as fractional loss (i.e., the amount of Ca^{2^+} released in 2 min divided by the total store Ca^{2^+} content at that time). Values are mean of four experiments. The S.E. was always less than 5%.

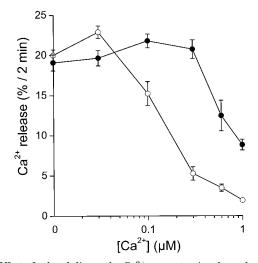

BAPTA and no added Ca^{2+} (open symbols) is shown in Fig. 2. Calmodulin inhibited the IP_3R with an IC_{50} value of 9 μM in the presence of 0.3 μM free Ca^{2+} . No inhibition was observed in the absence of added Ca^{2+} .

Effect of Calmodulin on Ca²⁺ Concentration Dependence of IP₃-Induced Ca²⁺ Release. Figure 3 illustrates how 20 μM calmodulin interfered with the activation of the IP₃R by Ca²⁺ in the presence of a constant IP₃ concentration (1.5 μM). The filled symbols illustrate the effects of Ca²⁺ on the IP₃-induced Ca²⁺ release in the absence of calmodulin. Low Ca²⁺ concentrations slightly activated the release, and high Ca²⁺ concentrations inhibited it. The open circles illustrate that a similar pattern also occurred in the presence of 20 μM calmodulin. Ca²⁺ inhibited the IP₃R with an IC₅₀ value of 0.92 μM Ca²⁺ in the absence of calmodulin and with an IC₅₀ value of 0.15 μM Ca²⁺ in its presence. The inactivation by Ca²⁺ therefore occurred at lower Ca²⁺ concentrations in the presence of calmodulin.

Discussion

16HBE14o- cells express for 81 to 93% IP₃R3, as judged from experiments using isoform-specific antibodies and from the relative levels of steady-state mRNA as determined by quantitative ratio reverse transcription-polymerase chain reaction (Sienaert et al., 1998). Although a small fraction of the IP₃Rs are IP₃R1 and IP₃R2 isoforms, the properties of the IP₃-induced Ca²⁺ release in 16HBE14o- cells were very similar to those in genetically engineered B cells that exclusively express IP₃R3 (Miyakawa et al., 1999); that is, the release was less sensitive to IP₃ and much less affected by ATP than in cell types expressing predominantly IP₃R1 (Missiaen et al., 1998). The properties of the IP₃-induced Ca²⁺ release in 16HBE14o- cells can therefore be considered as representative of the characteristics of IP₃R3.

We observed that calmodulin inhibited the IP_3 -induced Ca^{2+} release in 16HBE14o- cells in the presence of Ca^{2+} and that calmodulin shifted the inhibitory part of the Ca^{2+} -response curve toward lower Ca^{2+} concentrations. IP_3 -induced Ca^{2+} release in permeabilized RIN-m5F cells, which express


Fig. 2. Inhibition of the IP_3 -induced Ca^{2^+} release by calmodulin in permeabilized 16HBE14o- cells is dose-dependent. Ca^{2^+} release induced by 1.5 μ M IP_3 in the absence (\diamondsuit) or presence (\blacksquare) of 0.3 μ M free Ca^{2^+} was measured at the indicated calmodulin concentration. Values are mean \pm S.E. for three experiments.

between 60% (De Smedt et al., 1994) and 96% (Wojcikiewicz, 1995) of type 3 IP₃R, was also inhibited by calmodulin (Adkins et al., 2000). Binding studies have provided evidence for both Ca²⁺-dependent and -independent interactions between calmodulin and IP₃R1 (Maeda et al., 1991; Yamada et al., 1995; Patel et al., 1997; Cardy and Taylor, 1998; Adkins et al., 2000). Calmodulin interacts with at least two different binding sites, of which the functional significance has not yet been unequivocally demonstrated (Yamada et al., 1995; Sipma et al., 1999; Adkins et al., 2000). A Ca²⁺-dependent binding site is localized in the regulatory domain of IP3R1 (Yamada et al., 1995) and could be involved in the Ca²⁺dependent inhibition of IP₃R1 by calmodulin (Michikawa et al., 1999; Missiaen et al., 1999). This site was also identified in IP₃R2 but not in IP₃R3 (Yamada et al., 1995), possibly because its affinity is too low to be detected by affinity chromatography (Adkins et al., 2000).

The significance of the $\mathrm{Ca^{2+}}$ -independent interaction of $\mathrm{IP_3R1}$ with calmodulin is much less clear, but a role in the inhibition of $\mathrm{IP_3}$ -induced $\mathrm{Ca^{2+}}$ release was also proposed (Patel et al., 1997). Moreover, calmodulin was found to inhibit in a $\mathrm{Ca^{2+}}$ -independent way $\mathrm{IP_3}$ binding to the bacterially expressed ligand-binding domain of $\mathrm{IP_3R1}$ (Sipma et al., 1999), and similar observations were made for the ligand-binding domains of $\mathrm{IP_3R2}$ and $\mathrm{IP_3R3}$ (Vanlingen et al., 2000). These effects may be mediated by a conserved low-affinity calmodulin-binding site identified in the N-terminal region of $\mathrm{IP_3R1}$ (Adkins et al., 2000).

The inhibition of P_3 -induced Ca^{2^+} release by calmodulin in cell types expressing predominantly P_3R3 , such as RIN-m5F insulinoma cells (Adkins et al., 2000) or 16HBE14o-bronchial epithelial cells (present work), could therefore indicate the interaction of calmodulin to P_3R3 at a low-affinity binding site that could have been missed by calmodulin affinity chromatography. Alternatively, the effect of calmodulin may be indirect and mediated by a protein associated with P_3R3 and in fact can even be the P_3R1 or P_3R2 subunits present with the predominant P_3R3 as heterotetramers.

The Ca²⁺-induced inhibition of IP₃R1 in cerebellar microsomes in the absence of added calmodulin was prevented by 400

Fig. 3. Effect of calmodulin on the Ca^{2+} concentration dependence of the IP_3 -induced Ca^{2+} release in permeabilized 16HBE140- cells. The stores were challenged for 2 min with 1.5 μ M IP_3 and the indicated free Ca^{2+} concentration in the absence (\bullet) or presence (\bigcirc) of 20 μ M calmodulin. Values are mean \pm S.E. for four independent experiments.

Downloaded from molpharm.aspetjournals.org by guest on December 1, 2012

 μM N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a calmodulin inhibitor (Michikawa et al., 1999). Ca²+ also caused a significant inhibition of the $\mathrm{IP_3R3}$ in the absence of added calmodulin in permeabilized 16HBE140- cells. This could mean either that sufficiently high levels of endogenous calmodulin were still present after permeabilization or that calmodulin was not strictly necessary but only stimulated the Ca²+-induced inhibition of $\mathrm{IP_3R3}$. It was technically impossible to discriminate between these two possibilities, because the calmodulin inhibitor W-7 (50 $\mu \mathrm{M})$ induced an appreciable release of $^{45}\mathrm{Ca}^{2+}$ on its own (data not shown), probably via nonspecific lipophilic interactions.

High levels (>10 μ M) of calmodulin were found in brain, testis, and pituitary gland (Kakiuchi et al., 1982). Intermediate levels (5–10 μ M) were found in lung, prostate, and adrenal gland, whereas low levels (<5 μ M) occurred in liver, kidney, and spleen. In addition, calmodulin is compartmentalized, and its distribution changes during increases in intracellular Ca²⁺ concentration (Luby-Phelps et al., 1995). The concentration range over which calmodulin inhibited IP₃R3 (IC₅₀ = 9 μ M in the presence of 0.3 μ M free Ca²⁺) is therefore potentially physiologically relevant.

We conclude that $\rm IP_3R3$ in human bronchial mucosal cells is inhibited by calmodulin and that the $\rm Ca^{2^+}$ concentrations needed to inactivate $\rm IP_3R3$ are decreased by the presence of calmodulin. The present data therefore confirm our previous finding that the type 3 $\rm IP_3R$ can be inhibited by $\rm Ca^{2^+}$ (Missiaen et al., 1998). The present work extends these observations by showing that the $\rm Ca^{2^+}$ concentration needed to inactivate $\rm IP_3R3$ is largely dependent on the presence of calmodulin.

Acknowledgments

J.B.P. is Research Associate and P.D.S. is Senior Research Assistant at the Foundation for Scientific Research-Flanders (F.W.O.). G.B. is a Predoctoral Fellow of the "Vlaams Instituut voor de bevordering van het Wetenschappelijk-Technologisch Onderzoek in de Industrie (I.W.T.)." We thank Dr. G. Droogmans (Laboratory of Physiology, K.U.Leuven) for the computer program CaBuf to calculate the free Ca²⁺ concentration. We also thank Dr. D. C. Gruenert (Cardiovascular Research Institute, Department of Laboratory Medicine, Gene Therapy Core Center, University of California, San Francisco, CA) for the supply of 16HBE140- cells.

References

- Adkins CE, Morris SA, De Smedt H, Sienaert I, Török K and Taylor CW (2000) ${\rm Ca^{2^+}}$ -calmodulin inhibits ${\rm Ca^{2^+}}$ release mediated by type-1, -2 and -3 inositol trisphosphate receptors. Biochem J **345**:357–363.
- Berridge MJ (1993) Inositol trisphosphate and calcium signalling. *Nature (Lond)* **361**:315–325.
- Bezprozvanny I, Watras J and Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P₃- and calcium-gated channels from endoplasmic reticulum of cerebellum. *Nature (Lond)* **351**:751–754.
- Blondel O, Takeda J, Janssen H, Seino S and Bell GI (1993) Sequence and functional characterization of a third inositol trisphosphate receptor subtype, IP₃R-3, expressed in pancreatic islets, kidney, gastrointestinal tract, and other tissues. *J Biol Chem* **268**:11366–11363.
- Bootman MD, Missiaen L, Parys JB, De Smedt H and Casteels R (1995) Control of inositol 1,4,5-trisphosphate-induced Ca²⁺ release by cytosolic Ca²⁺. *Biochem J* **306**:445–451.
- Cardy TJA and Taylor CW (1998) A novel role for calmodulin: ${\rm Ca}^{2^+}$ -independent inhibition of type-1 inositol trisphosphate receptors. Biochem J 334:447–455.
- Cozens AL, Yezzi MJ, Kunzelmann K, Ohrui T, Chin L, Eng K, Finkbeiner WE, Widdicombe JH and Gruenert DC (1994) CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol 10:38–47.
- De Smedt H, Missiaen L, Parys JB, Bootman MD, Mertens L, Van Den Bosch L and Casteels R (1994) Determination of the relative amounts of inositol trisphosphate receptor mRNA isoforms by ratio polymerase chain reaction. *J Biol Chem* **269**: 21691–21698.

- Finch EA, Turner TJ and Goldin SM (1991) Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science (Wash DC) 252:443-446.
- Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N and Mikoshiba K (1989) Primary structure and functional expression of the inositol 1,4,5-trisphosphatebinding protein P400. Nature (Lond) 342:32–38.
- Hagar RE, Burgstahler AD, Nathanson MH and Ehrlich BE (1998) Type III $InsP_3$ receptor channel stays open in the presence of increased calcium. *Nature (Lond)* **396**:81–84.
- Horne JH and Meyer T (1995) Luminal calcium regulates the inositol trisphosphate receptor of rat basophilic leukemia cells at a cytosolic site. *Biochemistry* 34:12738 12748
- Iino M (1990) Biphasic Ca²⁺ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol 95:1103-1122.
- Kakiuchi S, Yasuda S, Yamazaki R, Teshima Y, Kanda K, Kakiuchi R and Sobue K (1982) Quantitative determinations of calmodulin in the supernatant and particulate fractions of mammalian tissues. J Biochem Tokyo 92:1041–1048.
- Lechleiter J, Girard S, Peralta E and Clapham D (1991) Spiral calcium wave propagation and annihilation in *Xenopus laevis* oocytes. *Science* (Wash DC) 252:
- Luby-Phelps K, Hori M, Phelps JM and Won D (1995) Ca²⁺-regulated dynamic compartmentalization of calmodulin in living smooth muscle cells. J Biol Chem 270:21532–21538.
- Maeda N, Kawasaki T, Nakade S, Yokota N, Taguchi T, Kasai M and Mikoshiba K (1991) Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. J Biol Chem 266:1109-1116.
- Mak DOD, McBride SMJ, Yue Y and Foskett JK (1998a) Calcium dependence of the kinetic properties of rat type 3 IP₃ receptor expressed in *Xenopus* oocytes. J Gen Physiol 112:30a.
- Mak DOD, McBride S and Foskett JK (1998b) Inositol 1,4,5-tris-phosphate activation of inositol tris-phosphate receptor Ca²⁺ channel by ligand tuning of Ca²⁺ inhibition. *Proc Natl Acad Sci USA* **95**:15821–15825.
- Mak DOD, McBride S and Foskett JK (1999) ATP regulation of type 1 inositol 1,4,5-trisphosphate receptor channel gating by allosteric tuning of Ca²⁺ activation. J Biol Chem 274:22231–22237.
- Martell AE and Smith RM (1982) Critical Stability Constants. Plenum Press, New York.
- Michikawa T, Hirota J, Kawano S, Hiraoka M, Yamada M, Furuichi T and Mikoshiba K (1999) Calmodulin mediates calcium-dependent inactivation of the cerebellar type 1 inositol 1,4,5-trisphosphate receptor. *Neuron* 23:799–808.
- Missiaen L, Parys JB, Sienaert I, Maes K, Kunzelmann K, Takahashi M, Tanzawa K and De Smedt H (1998) Functional properties of the type-3 InsP₃ receptor in 16HBE140- bronchial mucosal cells. *J Biol Chem* **273**:8983–8986.
- Missiaen L, Parys JB, Weidema AF, Sipma H, Vanlingen S, De Smet P, Callewaert G and De Smedt H (1999) The bell-shaped Ca²⁺-dependence of the inositol 1,4,5-trisphosphate induced Ca²⁺ release is modulated by Ca²⁺/calmodulin. *J Biol Chem* **274**:13748–13751.
- Miyakawa T, Maeda A, Yamazawa T, Hirose K, Kurosaki T and Iino M (1999) Encoding of Ca^{2+} signals by differential expression of IP_3 receptor subtypes. EMBO J 18:1303-1308
- Parys JB, Sernett SW, DeLisle S, Snyder PM, Welsh MJ and Campbell KP (1992) Isolation, characterization, and localization of the inositol 1,4,5-trisphosphate receptor protein in *Xenopus laevis* oocytes. *J Biol Chem* **267**:18776–18782.
- Patel S, Morris SA, Adkins CE, O'Beirne G and Taylor CW (1997) Ca²⁺-independent inhibition of inositol trisphosphate receptors by calmodulin: Redistribution of calmodulin as a possible means of regulating Ca²⁺ mobilization. *Proc Natl Acad Sci USA* 94:11627–11632.
- Ramos-Franco J, Fill M and Mignery GA (1998) Isoform-specific function of single inositol 1,4,5-trisphosphate receptor channels. $Biophys\ J\ 75:834-839.$
- Sienaert I, Huyghe S, Parys JB, Malfait M, Kunzelmann K, De Smedt H, Verleden GM and Missiaen L (1998) ATP-induced Ca²⁺ signals in bronchial epithelial cells. *Pfluegers Arch* **436**:40–48.
- Sipma H, De Smet P, Sienaert I, Vanlingen S, Missiaen L, Parys JB and De Smedt H (1999) Modulation of inositol 1,4,5-trisphosphate binding to the recombinant ligand-binding site of the type-1 inositol 1,4,5-trisphosphate receptor by Ca²⁺ and calmodulin. *J Biol Chem* **274**:12157–12162.
- Südhof TC, Newton CL, Archer BT III, Ushkaryov YA and Mignery GA (1991) Structure of a novel $InsP_3$ receptor. *EMBO J* 10:3199–3206.
- Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: Design, synthesis, and properties of prototype structures. *Biochemistry* 19:2396–2404.
- Tsukioka M, Iino M and Endo M (1994) pH dependence of inositol 1,4,5trisphosphate-induced Ca²⁺ release in permeabilized smooth muscle cells of the guinea-pig. J Physiol 475:369-375.
- Vanlingen S, Sipma H, De Smet P, Callewaert G, Missiaen L, De Smedt H and Parys JB (2000) Ca^{2+} and calmodulin differentially modulate inositol 1,4,5-trisphosphate binding to the recombinant ligand-binding domains of the various inositol 1,4,5-trisphosphate receptor isoforms. *Biochem J*, in press.
- Wojcikiewicz RJH (1995) Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. J Biol Chem 270:11678–11683.
- Yamada M, Miyawaki A, Saito K, Nakajima T, Yamamoto-Hino M, Ryo Y, Furuichi T and Mikoshiba K (1995) The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. *Biochem J* 308:83–88.

Send reprint requests to: Dr. Ludwig Missiaen, Laboratorium voor Fysiologie, K.U.Leuven Campus Gasthuisberg O/N, Herestraat 49, B-3000 Leuven, Belgium. E-mail: Ludwig.Missiaen@med.kuleuven.ac.be